题目大意:
给定你一颗树,每个点上有权值。 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连通图)且这颗树中必须包含节点1 然后将这颗子树中的所有点的点权+1或-1 求把所有点权全部变为0的最小次数(n<=10^5)题解:
因为每一次的子树中都必须有1,所以我们得知每一次变换的话1的权值都会变化
所以我们以1为根
现在,我们发现,如果一个节点的权值发生变化,那么他的父节点的权值一定发生变化
而一个点因为其子节点而导致的,不是用于平衡自己权值的变化是不可避免的
所以我们考虑最小化这个值,我们假设现在他的所有儿子都是叶子节点
那么节点u被变化的值即为inc[u] + dec[u]其中inc[u] = max{inc[v]},dec[u] = max{dec[v]}
inc[u]表示这个节点在最优情况下被加了多少次
dec[u]表示这个节点在最坏情况下被减了多少次
所以我们知道,在我们处理完了u的所有子树的问题后,就要解决自己本身的问题
所以这是根据val[u]的正负来调整inc,和dec
O(n)dfs即可
code
1 #include2 #include 3 #include 4 using namespace std; 5 typedef long long ll; 6 template inline void read(T &x){ 7 x=0;char ch;bool flag = false; 8 while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true; 9 while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;10 }11 template inline T cat_max(const T &a,const T &b){ return a>b ? a:b;}12 template inline T cat_min(const T &a,const T &b){ return a